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Figure 6. Median sand grain size 
[spring 2006, near the high tide 
waterline (dots); spring 2007, at +1 
m and +2 m elevation (triangles); and 
fall 2007, at +1 m and +2m elevation 
(plus signs)] and beach slope (gray 
line) versus alongshore location. The 
inset shows the cross-shore variability 
of the median grain size (D50) at three 
survey focus sites.

Figure 7. Alongshore variation between 
Camp Pendleton (0-2 km) and San 
Onofre (14-18 km) survey sites: (a) 
seasonal significant wave height, (b) 
onshore and offshore median sand 
grain size (D50), and (c) MSL standard 
deviation (σMSL) and cross-shore grain 
size difference (a, Eq. 1).

was roughly linear (Figure 8), and a more 
complicated relationship with an expo-
nential approach to equilibrium did not 
significantly improve model results. The 
model progresses hourly in time, calcu-
lating the difference between the current 
wave energy E and the equilibrium wave 
energy Eeq(S) for the current beach state 
at each time step. An optimization tech-
nique was used to search the parameter 
space for the values of the four free pa-
rameters minimizing the RMS difference 
between the observed and modeled MSL 
position [details in Yates et al., submitted 
to J.Geophys. Res.)]. 

The MSL observations, wave energy 
time series, and model output at one rep-
resentative alongshore location at Torrey 
Pines are shown in Figure 9, where the 
RMS difference between the model and 
the observations is 4.0 m (model con-
stants are: C+ = -1.23, C– = -0.53 ms-1/
m3, a = -0.0035 m2/m, b = 0.12 m2). The 
shoreline is eroded particularly rapidly by 
the first winter storm because the wave 
energy is significantly higher than the 
equilibrium wave energy Eeq(S) for the 
wide, accreted summer beach. Recov-
ery rates during low wave energy are 
slower than typical erosion rates. Wave 
parameters including H, Ω, Ω2, wave 
steepness, and the cross-shore radiation 
stress (Sxx) were used in Eq. 2 instead of 
E, but model performance did not im-
prove. After the model free parameters 
have been determined, the model can be 
used to predict future change given only 
the wave field (Yates et al. submitted to 
J.Geophys. Res.).

The model framework can be applied 
at other beaches; however, wave and 
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beach change observations are required 
to determine the model free parameters. 
The response coefficients can vary 
significantly between beaches. For ex-
ample, at Camp Pendleton, the LIDAR 
observations and over a year of in situ 
observations show a seasonal cycle of 
MSL change with magnitude similar to 
Torrey Pines, but relatively low wave 
energy, similar to San Onofre. Different 
equilibrium conditions and/or rate of 
change coefficients at these sites may be 
caused by the different sediment charac-
teristics. The frequency and duration of 
sand level surveys required to estimate 
model free parameter values are also be-
ing investigated (Yates et al. submitted 
to J.Geophys. Res.).

CONCLUSIONS
The well-known seasonal cycle of 

sand level changes on southern Cali-
fornia beaches (Shepard 1950) shows 
significant alongshore variability, which 
is not uniquely controlled by the along-
shore variability in waves, suggesting 
that geological factors influence the 
seasonal cycle magnitude. Along a 17-km 
reach with little alongshore variability 
in waves, the difference between the 
onshore and offshore sand grain size is 
negatively correlated with the magnitude 
of shoreline change. For the same wave 
energy, shoreline change is less with 
large cross-shore variations in grain 
size, with relatively coarse sand at the 
shoreline. Additionally, exposed cobbles 
and bedrock, available sand supply, cliff 
sediment input, and lagoon mouths may 
have significant, but unquantified effects 
on seasonal morphological changes. 

A simple equilibrium beach change 
model was developed and calibrated 
with observations at Torrey Pines and 
reproduced well the seasonal sand level 
fluctuations at Torrey Pines. The model 
can be applied at other locations, using 
observations of local sand levels and 
waves to find the model free parameters. 
Alongshore differences can be explored 
by comparing the relative magnitudes of 
the free parameters and their dependence 
on beach characteristics. 
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difference is ~4 m. (b) Wave energy versus time.
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