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Abstract Observations at the Columbia River plume show that wave breaking is an important source
of turbulence at the offshore front, which may contribute to plume mixing. The lateral gradient of current
associated with the plume front is sufficient to block (and break) shorter waves. The intense whitecapping
that then occurs at the front is a significant source of turbulence, which diffuses downward from the
surface according to a scaling determined by the wave height and the gradient of wave energy flux. This
process is distinct from the shear-driven mixing that occurs at the interface of river water and ocean water.
Observations with and without short waves are examined, especially in two cases in which the background
conditions (i.e., tidal flows and river discharge) are otherwise identical.

1. Introduction

The local effects of waves and wave breaking on river plumes and the mixing of estuarine waters is largely
unknown. Gerbi et al. [2013] present a numerical study of whitecap effects on the Hudson River plume
and find that the turbulence supplied by short wave breaking is sufficient to increase the plume depth hp

and slow the offshore expansion of the plume. Gerbi et al. [2013] show that interfacial gradients in
salinity and velocity (i.e., vertical shear) are reduced by the addition of turbulence at the surface. This
requires that the surface turbulence from the breaking waves diffuses downward [e.g., Craig and Banner,
1994] and reaches the base of the plume. This description is largely a vertical balance, which then controls
the lateral evolution of the plume.

A river plume will, in turn, affect the waves. This is primarily a lateral process, in which waves incident from
offshore (weak or no current) are shortened by an opposing current at the edge of plume such that the
absolute frequency 𝜔 is conserved

𝜔 = 𝜎 + u⃗ ⋅ k⃗, (1)

where u⃗ is the plume current, k⃗ is the wave number, and 𝜎 is the intrinsic frequency given by the linear
finite-depth dispersion relation, 𝜎2 = gk tanh(kd). Wave blocking occurs when an opposing current u⃗ equals
half of the group velocity, u = − 1

2
cg = − 1

2
𝜕𝜔

𝜕k⃗
[Mei, 1989]; however, previous studies have shown that

waves typically oversteepen and break before the actual blocking condition is reached [Chawla and Kirby,
2002]. For monochromatic waves, steepness of the waves can be approximated by Ak, where A is the wave
amplitude (equal to half the height H) and k is the scalar magnitude of the wave number vector and must
become larger (i.e., a shorter wave) in the presence of an opposing current u. The convention for a random
wave field is to use significant wave height, Hs, and wave number at the peak of the wave spectrum, kp, and
in this convention, deep-water wave breaking (i.e., whitecapping) is commonly observed for 1

2
Hskp ∼ 0.1

[Banner et al., 2000].

Here we present observations of wave breaking effects at the offshore front of the Columbia River plume.
The Columbia River plume has been studied by many previous authors, in particular Kilcher and Nash
[2010] who describe the shear-driven interfacial mixing as the plume spreads offshore and McCabe et al.
[2008] who describe the salt fluxes of the spreading plume in a Lagrangian frame. The transformation of
waves at the Columbia River mouth has also been studied by previous authors, in particular Gonzalez
and Rosenfeld [1984] who describe the refraction and focusing of waves in the presence of the opposing
currents and Kassem and Ozkan-Haller [2012] who show increased wave heights and steepness in the
presence of the opposing currents. In contrast to the previous works, our study is limited to an assessment
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of the wave-driven processes at the edge of the river plume as it spreads offshore during ebb tides, in
particular where the vertical and lateral processes collide. We consider two cases with similar tidal and river
conditions but with differing wave conditions.

2. Data Collection

Data were collected using freely drifting SWIFTs (Surface Wave Instrument Floats with Tracking), which were
deployed inside the mouth of the Columbia River (i.e., between the jetties) and allowed to drift offshore
during ebb tides. The SWIFTs are designed for wave-following measurements of near-surface turbulence
and are described in Thomson [2012]. The original version uses an up-looking pulse-coherent Doppler
sonar for turbulence measurements, in particular profiles of the turbulent dissipation rate, 𝜖(z), estimated
using the structure function of velocity fluctuations within 0.6 m of the water surface (z = 0 m). Here
a down-looking version of the SWIFT was also used, which measures currents and shear from 1.9 to
20 m below the water surface. SWIFTs also measure wave spectra, following the GPS-based method of
Herbers et al. [2012], and winds, using an ultrasonic anemometer (Airmar PB 200) mounted at 0.9 m above
the surface. Conductivity sensors (Onset HOBO) were added to the SWIFTs for this experiment at 0.5 m
below the surface. Finally, an onboard camera collecting images at 1 Hz is used to count breaking waves
observed by each SWIFT [Rusch et al., 2014]. All SWIFT observations are averaged and merged to 5 min
ensemble values.

The data for this study were collected on morning ebbs of the 24 and 25 May 2013. The SWIFTs were
deployed in pairs of up-looking and down-looking versions and allowed to drift offshore until becoming
caught in the plume front and recovered several hours later. On both days, the drifts began from navigation
buoy #12 just after peak ebb (predicted as 04:42 and 05:28 PDT, respectively). The SWIFT pairs stayed within
100 m of each other during transits of up to 50 km offshore. The SWIFTs became entrained in the sharp front
that commonly forms at the edge of the spreading plume around 20 km offshore and then turned north
with the plume. The tracks from 24 and 25 May are shown in Figure 1.

On both days, the surface currents at the river mouth were approximately 2 m/s, and surface currents
offshore (in the front) were approximately 1 m/s, as measured by the drift velocity of the SWIFTs. On
both days, the river stage was similar, with the nearest upstream U.S. Geological Survey (USGS) gage
(#14246900) reporting approximately 3 m and the USGS gage immediately downstream of the Bonneville
dam (#14128870) reporting 6.7 to 7.1 m over the 2 day period. The discharge at Bonneville dam ranged from
9100 to 8090 m3 s−1 during these 2 days. The tidal elevation drops at Tongue Point (Astoria, OR) were 3.3
and 3.4 m, respectively.

Wave and wind conditions, as measured by the SWIFTs, were notably different between the 2 days. On 24
May there was a moderate swell, and the seas were calm. On 25 May the swell was somewhat reduced, but
there was a strong wind sea from the south, arising from approximately 10 m/s southerly winds.

Additional wave data were collected by a Datawell Waverider buoy maintained by the Coastal Data
Information Program (CDIP station 179), moored offshore at the Astoria Canyon (46.1328, −124.6455). This
position is outside of the plume for the data considered here and thus a measure of the incident wave field
before it encounters the currents associated with the plume.

3. Analysis
3.1. Wave Breaking at the Plume Front
As shown in Figure 1 with a picture taken from the R/V Oceanus during the same research cruise, wave
breaking can be vigorous at the offshore edge of the river plume. This is confirmed by the breaking waves
counted using the images on board each SWIFT, which range from 5 to 10 breakers per 5 min ensemble
on 25 May. This is in contrast to the calm conditions at the offshore edge of the river plume on 24 May,
when there were only 0 to 1 breakers per 5 min ensemble. These breaker counts are converted to a
breaking fraction

Qb = N
�̄� , (2)

where N is the number of breakers in a given amount of time  = 300 s that pass at an energy-weighted
average intrinsic frequency �̄�.
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Figure 1. Wave energy spectral density versus frequency for (a) 24 and (b) 25 May 2014. Red and blue lines are SWIFT
measurements within the plume, and black lines are CDIP measurements outside of the plume. The frequencies at which
waves are expected to break against the plume currents are shown with the annotation “blocked.” (c) Photo of a SWIFT
in the breakers at the offshore front. Photo taken by Chris Bassett on 28 May 2014, which was similar to 25 May 2014.
(d) Tracks of SWIFT drifters as 5 min average positions, colored by day (blue is 24 May, and red is 25 May) and scaled by
the fraction of breaking, Qb.

The breaking fractions (or rates) observed on 25 May far exceed the whitecap rates expected for the
observed 10 m/s winds [Thomson et al., 2009], and this enhanced breaking is a result of the strong
wave-current interaction at the plume edge. For a 1 m/s plume current, wave blocking in deep water occurs
for frequencies of f = 2𝜋𝜔 > 0.38 Hz and breaking via oversteepening can be expected for frequencies of
f = 2𝜋𝜔 > 0.2 Hz (assuming Hs = 1 m and 1

2
Hskp is limited to < 0.1 for the wind chop portion of the wave

spectrum). The effect is clear in the observed wave energy density spectra in Figure 1, where the affected
frequencies are annotated. On 24 May, the wave energy density at these frequencies is similar within the
plume (SWIFT measured) and offshore of the plume (CDIP measured), because it is a calm day and there is
very little energy at those frequencies. On 25 May, the wave energy density at these frequencies is reduced
within the plume (SWIFT measured) relative to offshore of the plume (CDIP measured), because these
waves break when they encounter the currents at the plume edge. This assumes deep water and neglects
adjustments to the wave-current interactions for the vertical shear of the plume currents [e.g., Dong and
Kirby, 2012], both of which are justified for short waves.

Thus, the difference between the 2 days (one windy and the other calm) is not that there are whitecaps
over the whole plume but rather that there are short waves incident on the plume which are blocked
(or broken, actually) by the horizontally sheared surface current. This creates a narrow region of intense
wave dissipation at the expanding front.

The gradient of wave energy flux dF
dx

is the quantification of the wave energy loss rate in a breaking region of
lateral width dx and is calculated by a wave energy spectrum in deep water via

dF
dx

=
dEcg

dx
= d

dx ∫ E(f )
g

2f
df . (3)

On 24 May, there is a negligible dF
dx

across the plume front for the frequency range 0.2 < f < 0.7 Hz. On

25 May, by contrast, there is a notable dF
dx

across the plume front (i.e., the difference between the blue and
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Figure 2. SWIFT results plotted versus local time and drift distance (along-track distance offshore from river mouth) for
a case without wave breaking (24 May 2014) and a case with wave breaking (25 May 2014). Significant wave height and
vertical profiles of near-surface turbulent dissipation rate (color scale) from the up-looking SWIFTs for (a) 24 and (b) 25
May. Current profiles (color scale) and level of maximum shear from the down-looking SWIFTs for (c) 24 and (d) 25 May.
The SWIFTs are trapped in the plume front at approximately x < −30 km.

black lines in Figure 1b). Assuming a frontal region of dx=100 m [Nash and Moum, 2005], the wave
dissipation rate in the front on 25 May is similar to a surf zone at a small shore break. The wave energy flux
gradient will be used in a model of the surface turbulence, and a constant value will be used for each day
because the offshore CDIP wave spectra are only available on an hourly basis (as opposed to the 5 min
spectra from the SWIFTs).

3.2. Surface Turbulence Measurements
SWIFT measurements of waves, surface turbulence, and plume currents for both days are shown versus
along track distance in Figure 2. The up-looking turbulence profiles u′(z) collected by the SWIFTs are
processed to obtain the vertical structure function D(z, r), where z is the vertical location (z=0 is the
instantaneous free surface) and r is the distance between velocity fluctuations as [Wiles et al., 2006]

D(z, r) = (u′(z) − u′(z + r))2. (4)

The structure function approach is distinct from the more conventional frequency spectral method, because
it does not require the assumption of an advected frozen field (i.e., Taylor’s hypothesis). Assuming a cascade
of isotropic eddies in the inertial subrange, D(z, r) has the form r2∕3 at each z level in the profile, the
corresponding energy dissipation rate is given by [Wiles et al., 2006]

𝜖(z) =

( 2
v

(z)

)3∕2

, (5)

where 2
v is a constant and (z) is determined for each z from fitting each D(z, r) to r2∕3.

On both days, the SWIFTs cross the bar at approximately x=−8 km and reach the plume front at
approximately x=−25 km (Figure 1). Although the wave height transformation via shoaling and focusing
at the bar is dramatic on both days, these are predominately long waves (swell) and are not steep enough
to break. This is confirmed by the breaker counts from the images on board the SWIFTs. Most of breaking,
rather, is in the offshore front on 25 May, and this is coincident with elevated near-surface turbulent
dissipation rates 𝜖(z) that persist from x=−25 to −50 km while the SWIFT remains caught in the front. The
maximum turbulent dissipation values are 𝜖(z) ∼ 3 × 10−3 W/kg in the front on 25 May.
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Figure 3. Observed (solid lines) and extrapolated (dashed lines) TKE
dissipation rate profiles 𝜖(z) from 24 May (blue) and 25 May (red). Also
shown are the plume depths in the frontal region for both days, as well
as the range of values reported in Kilcher and Nash [2010]. Near-surface
TKE dissipation rates are enhanced by wave breaking at the plume front
on 25 May, and the values extrapolated down to plume depths are within
the range of subsurface frontal values reported in Kilcher and Nash [2010].
Extrapolations use 𝛼 = 0.01 and 𝜆 = 1 in equation (6).

3.3. Scaling the Wave Breaking
Turbulence
As shown in previous studies [e.g.,
Agrawal et al., 1992; Gemmrich,
2010; Thomson et al., 2013], the high
turbulent dissipation rates associated
with wave breaking decay rapidly
beneath the surface. In Figure 2, 𝜖(z)
reduces from 3 × 10−3 to 1 × 10−4

W/kg within a half meter below
the surface. The vertical decay is
important for evaluating the impact
of wave breaking turbulence on
plume processes.

The canonical model for the vertical
scaling of turbulence 𝜖(z) generated
during wave breaking is from
Terray et al. [1996]. This model uses
the wind stress as the Turbulent
Kinetic Energy (TKE) input term
(assuming equilibrium) [i.e., Phillips,
1985; Thomson et al., 2013] and the
significant wave height Hs as the

vertical scale. This model was recently modified by Feddersen [2012a] to use observed wave energy flux gra-
dients, dF∕dx, as the TKE input term and by Feddersen [2012b] to use total water depth as the vertical scale
(for surf zone applications). For the deep-water wave breaking observed at the Columbia Plume front, we
apply the version based on observed wave energy gradients and significant wave heights,

𝜖Hs

dF∕dx
= 𝛼

(
z

Hs

)−𝜆

, (6)

in which 𝛼 and 𝜆 are coefficients to be determined.

Figure 3 shows the results of the Feddersen [2012a] model with best fit values rounded to 𝛼=0.01 and
𝜆=1. The departure from the more typical 𝜆=2 is expected in a region where downwelling is strong, and this
result is consistent with other measurements during intense breaking (e.g., S. Zippel and J. Thomson, Journal
Geophysical Research, submitted manuscript, 2014). This scaling is used to extrapolate below the deepest
values of the SWIFT estimates (z=−0.6 m) and assess the potential for breaking waves to elevate the
turbulent mixing at the subsurface interface of plume water and ocean water. Using the depth of maximum
shear from Figure 2 as the plume depth, the extrapolated 𝜖 values at the interface are in the range of
10−6 to 10−5 W/kg without breaking waves and 10−5 to 10−4 W/kg with breaking waves. The values with
breaking waves are in the range of the frontal values reported by Kilcher and Nash [2010].

4. Discussion

These observations clearly show that the plume front has a significant effect on short surface waves, if they
are present and are energetic enough to reach steepness-limited breaking conditions. This mechanism
significantly increases turbulence at the front, especially near the surface, where it may increase the vertical
exchange of surface-bound material, organisms, and even gases. However, the influence of this turbulence
on mixing beneath the front is not known. Extrapolated turbulence dissipation rates suggest that wave
breaking turbulence may reach the depths where stratification is significant. The breaking-generated
turbulence at the plume front has a much deeper penetration (𝜆=1 as best fit to equation (6)) than
typically observed in the open ocean (𝜆≈2). It is likely that downward transport is enhanced at the plume
front, where vertical velocities on the order of 0.2–0.4 m/s are often observed [Orton and Jay, 2005;
O’Donnell et al., 1998]. It also is possible that turbulent transport is stronger when the breaking is particularly
regular and vigorous (as opposed to weak and intermittent whitecaps in the open ocean).
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Although this study lacks direct observations of mixing or comprehensive characterization of the plume, a
bulk estimate of mixing does provide additional context for these observations. Previous studies have used
drifters to estimate bulk mixing levels in plumes using a Lagrangian control volume for salt, approximated
by hpu ds

dx
, where hp is the plume depth estimated as the level of maximum shear, u is the drifter velocity,

and ds
dx

is the change in salinity along the drifter track [McCabe et al., 2008; MacDonald, 2007]. Applying this
approach here results in estimates of 𝜖 ∼ 10−4 W/kg on 24 May and 𝜖 ∼ 10−3 W/kg on 25 May. This differ-
ence likely is related to the strong winds on 25 May, which in turn created the wind chop that broke at the
plume front.

Two conditions are plausible for the wave breaking to lead to plume mixing. First, there could be strong
stratification at the depths of high wave-driven TKE dissipation. Second, there could be significant
downward diffusion (or transport) of wave-driven TKE to the depths of high stratification (as suggested
by Figure 3). The first condition would be consistent with the leading edge of the spreading plume as a
thin (∼ 1 m) slab that is vigorously mixed by wave breaking, such that it is rapidly thickened as it spreads.
Previous observations of the Columbia River plume do suggest that stratification can be strong very close
to the surface [e.g., Kilcher and Nash, 2010, Figure 4b], though an equally strong region of stratification
exists well below the surface. The second condition would be less efficient but more consistent with most
observations of large river plumes. High-resolution measurements of the vertical salinity structure across
the plume front, not collected during this study, would be necessary to evaluate these scenarios.

5. Conclusion

Observations of the Columbia River plume indicate that short waves break upon encountering the currents
at the edge of the plume. Much of this wave energy is converted to turbulence during breaking, as
confirmed by comparing the gradient of the wave energy flux with direct observations of near-surface
turbulent dissipation rates in a model for the vertical distribution of turbulent dissipation. The turbulence
penetrates deeper than the canonical dependence for ocean wave breaking, and the difference is attributed
to strong downwelling at the front. Extrapolation of the turbulence to the depths where the plume
entrains ocean water raises the possibility that surface-generated turbulence can elevate the mixing of an
expanding river plume.
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